NASA 透過毅力號錄音發現聲音在火星上傳得比地球更慢,高、低音的傳播速度還有不同。
在針對俄羅斯的制裁取消前,該國將不會參與國際太空站合作
在針對俄羅斯的制裁取消前,該國將不再參與國際太空站合作,俄國太空署負責人對西方「非法」的制裁表達了自己的態度。
NASA delays SLS Moon rocket test due to safety concerns
NASA has delayed a critical test of its next-generation Space Launch System. On Sunday, the agency had planned to fuel the rocket as part of a “wet dress rehearsal” designed to replicate the launch countdown process for its upcoming Artemis 1 Moon mission later this year. Shortly after 12PM ET, NASA announced it was scrubbing the test due to an issue with the rocket’s mobile launcher platform.
For safety, we’ve stopped the #Artemis I wet dress rehearsal. Teams are meeting now to assess next steps. We are looking at Monday, April 4 as the next opportunity to resume operations, and will have a media briefing later today. Check here for updates. https://t.co/pweviGRjwg
— NASA (@NASA) April 3, 2022
Before NASA personnel began loading the spacecraft with 700,000 gallons of liquid propellant, the agency found a system on the launcher vital to the rocket’s safety had failed after it lost the ability to pressurize the platform. “The fans are needed to provide positive pressure to the enclosed areas within the mobile launcher and keep out hazardous gases,” NASA said. “Technicians are unable to safely proceed with loading the propellants into the rocket’s core stage and interim cryogenic propulsion stage without this capability.”
NASA could re-attempt the test as early as April 4th, though that will depend on a handful of factors, including the availability of fuel. The agency said it would hold a press conference later today to discuss its plan. A successful test would mark an important milestone for NASA. It has spent a decade and more than $23 billion developing the Space Launch System, and the rocket is the centerpiece of many of NASA’s plans for the Moon and beyond.
NASA’s Perseverance Rover helps scientists find sound travels slower on Mars
Since landing on Mars more than a year ago, NASA’s Perseverance Rover has used its microphones to capture the sounds of the Red Planet, including its harsh winds and the hum of Ingenuity cutting through the atmosphere. And now those recordings have hel…
Russia won’t cooperate on the International Space Station until sanctions are lifted
Russia’s Roscosmos will stop working with NASA and other western space agencies on the International Space Station. On early Saturday morning, Roscosmos director Dmitry Rogozin slammed international sanctions against Russia and said normal cooperation …
Hubble may have spotted the most distant star to date
Astronomers have had success finding some of the most distant galaxies in the universe, but now they might have pinpointed the most distant star to date. As SyFy Wirenotes, researchers using the Hubble Space Telescope have spotted Earendel (“morning star” in Old English), a star currently reckoned to be 12.9 billion light-years away — the light we see from it comes from when the universe was roughly 900 million years old. Until now, the smallest objects seen at that distance were star clusters.
If confirmed, the star will easily smash the previous record. The most distant star before now was MACS J1149+2223 Lensed Star 1, which shone when the universe was about 4 billion years old. Scientists found that star using Hubble in 2018.
The feat was accomplished using gravitational lensing, or relying on the gravity of galaxy clusters to distort light and magnify objects that would otherwise remain difficult or impossible to detect. The star’s host galaxy had its light warped into a long arc thanks to the massive WHL0137-08 galaxy cluster. As Earendel sits on the edge of a space “caustic,” or a ripple in the fabric of space, its brightness was magnified a thousand times and helped it stand out.
Earendel is a large beast, too. The scientists estimate it’s “at least” 50 times the mass of the Sun, and millions of times brighter. It’s also expected to have relatively little metal, as it would have formed when it didn’t have access to heavier elements that came with successive star generations. If it’s made of only hydrogen and helium, it would be the first evidence of very early “Population III” stars.
The object hasn’t been confirmed as a star yet, but that might come relatively soon. Observers plan to use the James Webb Space Telescope’s high infrared sensitivity to both verify Earendel’s star status and study it in more detail. With that said, Webb might also help pinpoint stars that are even more distant. To put it another way, he technology needed to acknowledge the star’s existence might relegate it to a footnote.
After 355 days aboard the ISS, astronaut Mark Vande Hei returns to Earth a changed man
After 355 days aboard the ISS, NASA astronaut and five-time flight engineer Mark T Vande Hei returns to Earth as record holder for the longest single spaceflight in NASA history, having surpassed Commander Scott Kelly’s 340-day mark set in 2018. Though not as long as Peggy Whitson’s 665 cumulative days spent in microgravity, Vande Hei’s accomplishment is still one of the longest single stints in human spaceflight, just behind Russia’s Valeri Polyakov, who was aboard the Mir for 438 straight days (that’s more than 14 months) back in the mid-1990s.
Though NASA’s Human Research Program has spent 50 years studying the effects that microgravity and the rigors of spaceflight have on the human body, the full impact of long-duration space travel has yet to be exhaustively researched. As humanity’s expansion into space accelerates in the coming decades, more people will be going into orbit — and much farther — both more regularly and for longer than anyone has in the past half century, and they’ll invariably need medical care while they’re out there. To fill that need, academic institutes like the Center for Space Medicine at the Baylor College of Medicine in Houston, TX, have begun training a new generation of medical practitioners with the skills necessary to keep tomorrow’s commercial astronauts alive on the job.
Even traveling the relatively short 248-mile distance to the International Space Station does a number on the human body. The sustained force generated during liftoff can hit 3 gs, though “the most important factors in determining the effects the sustained acceleration will have on the human body is the rate of onset and the peak sustained g force,” Dr. Eric Jackson wrote in his 2017 dissertation, An Investigation of the Effects of Sustained G-Forces on the Human Body During Suborbital Spaceflight. “The rate of onset, or how fast the body accelerates, dictates the ability to remain conscious, with a faster rate of onset leading to a lower g-force threshold.”
Untrained civilians will begin feeling these effects at 3 to 4 gs but with practice, seasoned astronauts using support equipment like high-g suits can resist the effects until around 8 or 9 gs, however the unprotected human body can only withstand about 5 gs of persistent force before blacking out.
Once the primary and secondary rocket stages have been expended, the pleasantness of the spaceflight will improve immensely, albeit temporarily. As NASA veteran with 230 cumulative days in space, Leroy Chiao, told Space in 2016, as soon as the main engines cut out, the crushing Gs subside and “you are instantly weightless. It feels as if you suddenly did a forward roll on a gym mat, as your brain struggles to understand the odd signals coming from your balance system.”
“Dizziness is the result, and this can again cause some nausea,” he continued. “You also feel immediate pressure in your head, as if you were lying down head first on an incline. At this point, because gravity is no longer pulling fluid into your lower extremities, it rises into your torso. Over the next few days, your body will eliminate about two liters of water to compensate, and your brain learns to ignore your balance system. Your body equilibrates with the environment over the next several weeks.”
Roughly half of people who have traveled into orbit to date have experienced this phenomenon, which has been dubbed Space Adaptation Syndrome (SAS), though as Chiao noted, the status debuffs do lessen as the astronaut’s vestibular system readjusts to their weightless environment. And even as the astronaut adapts to function in their new microgravity surroundings, their body is undergoing fundamental changes that will not abate, at least until they head back down the gravity well.
“After a long-duration flight of six or more months, the symptoms are somewhat more intense,” Chiao said. “If you’ve been on a short flight, you feel better after a day or two. But after a long flight, it usually takes a week, or several, before you feel like you’re back to normal.”
“Spaceflight is draining because you’ve taken away a lot of the physical stimulus the body would have on an everyday basis,” Dr. Jennifer Fogarty from Baylor’s Center for Space Medicine, told Engadget.
“Cells can convert mechanical inputs into biochemical signals, initiating downstream signaling cascades in a process known as mechanotransduction,” researchers from the University of Siena noted in their 2021 study, The Effect of Space Travel on Bone Metabolism. “Therefore, any changes in mechanical loading, for example, those associated with microgravity, can consequently influence cell functionality and tissue homeostasis, leading to altered physiological conditions.”
Without those sensory inputs and environmental stressors that would normally prompt the body to maintain its current level of fitness, our muscles will atrophy — up to 40 percent of their mass, depending on the length for the mission — while our bones can lose their mineral density at a rate of 1 to 2 percent every month.
“Your bones are … being continually eaten away and replenished,” pioneering Canadian astronaut Bjarni Tryggvason told CBC in 2013. “The replenishment depends on the actual stresses in your bones and it’s mainly … bones in your legs where the stresses are all of a sudden reduced [in space] that you see the major bone loss.”
This leaves astronauts highly susceptible to breaks, as well as kidney stones, upon their return to Earth and generally require two months of recovery for every month spent in microgravity. In fact, a 2000 study found that the bone loss from six months in space “parallels that experienced by elderly men and women over a decade of aging on Earth.” Even intensive daily sessions with the treadmill, cycle ergometer and ARED (Advanced Resistance Exercise Device) aboard the ISS, paired with a balanced nutrient-rich diet, has only shown to be partially effective at offsetting the incurred mineral losses.
And then there’s the space anemia. According to a study published in the journal, Nature Medicine, the bodies of astronauts appear to destroy their red blood cells faster while in space than they would here on Earth. “Space anemia has consistently been reported when astronauts returned to Earth since the first space missions, but we didn’t know why,” study author Guy Trudel said in a January 14 statement. “Our study shows that upon arriving in space, more red blood cells are destroyed, and this continues for the entire duration of the astronaut’s mission.”
This is not a short term adaptation as previously believed, the study found. The human body on Earth will produce and destroy around 2 million red blood cells every second. However, that number jumps to roughly 3 million per second while in space, a 54 percent increase that researchers attribute to fluid shifts in the body as it adapts to weightlessness.
Recent research also suggests that our brains are actively “rewiring” themselves in order to adapt to microgravity. A study published in Frontiers in Neural Circuits investigated structural changes found in white matter, which interfaces the brain’s two hemispheres, after space travel using MRI data collected from a dozen Cosmonauts before and after their stays aboard the ISS, for about 172 days apiece. Researchers discovered changes in the neural connections between different motor areas within the brain as well as changes to the shape of the corpus callosum, the part of the brain that connects and interfaces the two hemispheres, again due to fluid shifts.
“These findings give us additional pieces of the entire puzzle,” study author Floris Wuyts of Floris Wuyts, University of Antwerp told Space. “Since this research is so pioneering, we don’t know how the whole puzzle will look yet. These results contribute to our overall understanding of what’s going on in the brains of space travelers.”
As the transition towards commercial space flight accelerates and the orbital economy further opens for business, opportunities to advance space medicine increase as well. Fogarty points out that government space flight programs and installations are severely limited in the number of astronauts they can handle simultaneously — the ISS holds a whopping seven people at a time — which translates into multi-year long queues for astronauts waiting to go into space. Commercial ventures like Orbital Reef will shorten those waits by expanding the number of space-based positions available which will give institutions like the Center for Space Medicine more, and more diversified, health data to analyze.
“The diversity of the types of people that are capable and willing to go [into space for work] really opens up this aperture on understanding humanity,” Fogarty said, “versus the [existing] select population that we always struggle to match to or interpret data from.”
Even returning from space is fraught with physiological peril. Dr. Fogarty points out that while in space the gyroscopic organs in the inner ear will adapt to the new environment, which is what helps alleviate the symptoms of SAS. However, that adaptation works against the astronaut when they return to full gravity — especially the chaotic forces present during reentry — they can be shocked by the sudden return of amplified sensory information. It’s roughly equivalent, she describes, to continuing to turn up the volume on a stereo with a wonky input port: You hear nothing as you rotate the knob, right up until the moment the input’s plug wiggles just enough to connect and you blow your eardrums out because you’d dialed up the volume to 11 without realizing it.
“Your brain has acclimated to an environment, and very quickly,” Fogarty said. “But the organ systems in your ear haven’t caught up to the new environment.” These effects, like SAS, are temporary and do not appear to limit the amount of times an astronaut can venture up to orbit and return. “There’s really no evidence to say that we would know there would be a limit,” she said, envisioning it could end up being more of a personal choice in deciding if the after-effects and recovery times are worth it for your next trip to space.
Record-breaking NASA astronaut makes it safely back to Earth
Mark Vande Hei, who broke the record for the longest single spaceflight by an American astronaut, has safely made it back to Earth. Vande Hei made his way to the International Space Station on April 9th last year and spent 355 days in orbit, eclipsing Scott Kelly’s record of 340 continuous days spent outside our planet’s atmosphere. This concludes Vande Hei’s second spaceflight, bringing his total number of days spent in space to 523.
The American astronaut made the journey back to Earth with Russian cosmonauts Anton Shkaplerov and Pyotr Dubrov aboard the Soyuz MS-19 spacecraft. There were fears that Roscosmos would leave Vande Hei stranded in space after the US imposed sanctions against Russia following its invasion of Ukraine. NASA would’ve had to rely on private companies, such as SpaceX, to transport him back. Russian space agency Roscosmos issued a statement assuring everyone that it will ferry Vande Hei back home, though, proclaiming that the agency “has never given reason to doubt its reliability as a partner.”
The three passengers closed the hatch to their Soyuz spacecraft at 11:30PM EDT on March 29th. They undocked at 2:45AM on March 30th and touched down at 7:28AM (5:28AM local time) in Kazakhstan. While he was aboard the ISS, Vande Hei contributed to dozens of studies conducted on the station, including six investigations by NASA’s Human Research Program. His contributions will help the agency and commercial space companies prepare better for long-duration spaceflights to destinations farther than the ISS in the future.
SpaceX 停止 Crew Dragon 生產
SpaceX 停止 Crew Dragon 生產,但會繼續製造組件並保留生產額外太空艙的能力。
MIT’s new simulation reveals crucial insights into the birth of the universe
Spontaneously generating reality is a messy affair.Our Big Bang, for example, unleashed a universe’s worth of energy and matter in an instant, then flung it omnidirectionally away at the speed of light as temperatures throughout the growing cosmos exce…